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Machine Learning 
(ML)

However, ML is vulnerable to adversarial examples

Ian Goodfellow et al. Nicholas Carlini et al.
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Is adversarial attack  practical on 
SRSs ?

FAKEBOB
Black-box
Appliable to general SRS task
Effective on commercial SRSs
Effective in over-the-air attack
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Threat model
Attacker Goal: pass voice authentication; gain access to privilege 

Attacker Capability: no information about model structure / parameter; 
limited to query the speak model of the victims
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Novel threshold estimation algorithm
𝜃̂𝜃 > 𝜃𝜃 &&
𝜃̂𝜃 ≈ 𝜃𝜃

�𝜃𝜃 > 𝜃𝜃: make sure attack succeeds
�𝜃𝜃 ≈ 𝜃𝜃: attack not too expensive
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Overview of FAKEBOB

1 2

3 4

different tasks:
OSI: open-set identification
CSI: close-set identification
SV: speaker verification

3 NES-based gradient estimation

4 Solve the optimization problem by gradient descent

estimated gradient information
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Overview of FAKEBOB

1 2

3 4

different tasks:
OSI: open-set identification
CSI: close-set identification
SV: speaker verification

API Attack API5 Over-the-air attack

previous work: model the noise during generation
somehow environment- and 
device- dependent

ours: improve confidence
Simple but Effective (will shown later)

Challenge: noise in air channel makes attack ineffective



Experimental result



Attack Open-source

Experimental result



Attack Open-source

≈ 100% attack success rate (ASR)

Experimental result



Attack Open-source

≈ 100% attack success rate (ASR)

Attack Commercial

Experimental result



Attack Open-source

≈ 100% attack success rate (ASR)

Talentedsoft

Attack Commercial

Experimental result

return scores and decisions



Attack Open-source

≈ 100% attack success rate (ASR)

Talentedsoft

Attack Commercial

Experimental result

return scores and decisions  direct attack by query 



Attack Open-source

≈ 100% attack success rate (ASR)

Talentedsoft

Attack Commercial

Experimental result

return scores and decisions  direct attack by query 

100% ASR; 2500 query on average



Attack Open-source

≈ 100% attack success rate (ASR)

Talentedsoft

Attack Commercial

Experimental result

return scores and decisions  direct attack by query 

100% ASR; 2500 query on average

Microsoft Azure return only decisions



Attack Open-source

≈ 100% attack success rate (ASR)

Talentedsoft

Attack Commercial

Experimental result

return scores and decisions  direct attack by query 

100% ASR; 2500 query on average

Microsoft Azure return only decisions  transfer attack



Attack Open-source

≈ 100% attack success rate (ASR)

Talentedsoft

Attack Commercial

Experimental result

return scores and decisions  direct attack by query 

100% ASR; 2500 query on average

Microsoft Azure return only decisions  transfer attack

26% ASR



Attack Open-source

≈ 100% attack success rate (ASR)

Talentedsoft

Attack Commercial

Experimental result

return scores and decisions  direct attack by query 

100% ASR; 2500 query on average

Microsoft Azure return only decisions  transfer attack

26% ASR



Over the air Attack

Experimental result



Over the air Attack

Experimental result

different distance between loundspeaker
and microphone 

Distance (meter) 0.25 0.5 1 2 4 8
ASR (%) 100 100 100 70 40 10



Over the air Attack

Experimental result

different distance between loundspeaker
and microphone 

Distance (meter) 0.25 0.5 1 2 4 8
ASR (%) 100 100 100 70 40 10

JBL portable speaker

Shinco broadcast equipment 

Loundspeaker:

Laptop

Different devices (at least 70% ASR)



Over the air Attack

Experimental result

different distance between loundspeaker
and microphone 

Distance (meter) 0.25 0.5 1 2 4 8
ASR (%) 100 100 100 70 40 10

JBL portable speaker

Shinco broadcast equipment 

Loundspeaker:

Laptop

Different devices (at least 70% ASR)

iPhone OPPO

Microphone:



Over the air Attack

Experimental result

different distance between loundspeaker
and microphone 

Distance (meter) 0.25 0.5 1 2 4 8
ASR (%) 100 100 100 70 40 10

JBL portable speaker

Shinco broadcast equipment 

Loundspeaker:

Laptop

Different devices (at least 70% ASR)

iPhone OPPO

Microphone:

Device independent



Over the air Attack

Experimental result

JBL portable speaker

Shinco broadcast equipment 

Loundspeaker:

Laptop

different acoustic environments 
White / Bus / Restaurant  / Music noise
at least 48% ASR when noise < 60 dB

Different devices (at least 70% ASR)different distance between loundspeaker
and microphone 

Distance (meter) 0.25 0.5 1 2 4 8
ASR (%) 100 100 100 70 40 10

iPhone OPPO

Microphone:

Device independentEnvironment independent
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imperceptibility in SRSs
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2. Effective to commercial speaker recognition services
3. Effective in over-the-air attack
4. Imperceptible to human hearing

FAKEBOB Website: 
https://sites.google.com/view/fakebob/home
FAKEBOB Code:
https://github.com/FAKEBOB-adversarial-attack/FAKEBOB

System and Software Security Lab (S3L), ShanghaiTech University:
http://s3l.shanghaitech.edu.cn/

S3L Lab
WeChat QR Code
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http://s3l.shanghaitech.edu.cn/
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