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+ 0.007 x §

times
Benign example Adversarial example
Result: Panda Perturbation Result: Gibbon It is a truth universally
Confidence: 57.7% Confidence: 99.3% 0 = acknowledged that a single

;TC;? [s adversarial attack practical on
e SRSs ?
% Black-box

FAKEBOB @ Appliable to general SRS task

® Eftective on commercial SRSs

® Effective in over-the-air attack
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Take away:

1. Black-box and practical adversarial attack against
speaker recognition systems

2. Effective to commercial speaker recognition services

3. Effective in over-the-air attack

4. Imperceptible to human hearing S3L Lab
. WeChat QR Code
. [, FAKEBOB Website:
https://sites.google.com/view/fakebob/home
O FAKEBOB Code:

https://github.com/FAKEBOB-adversarial-attack/ FAKEBOB

=S°Lely  System and Software Security Lab (S3L), ShanghaiTech University:

FaoKeReRRs http://s31.shanghaitech.edu.cn/
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